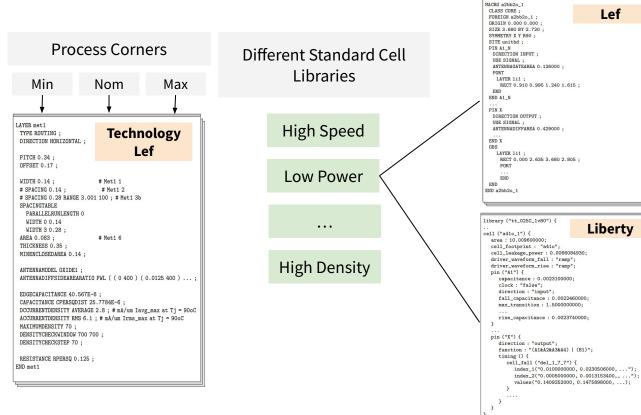
ChipXplore: Natural Language Exploration of Hardware Designs and Libraries

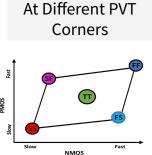
Manar Abdelatty, Jacob Rosenstein, Sherief Reda

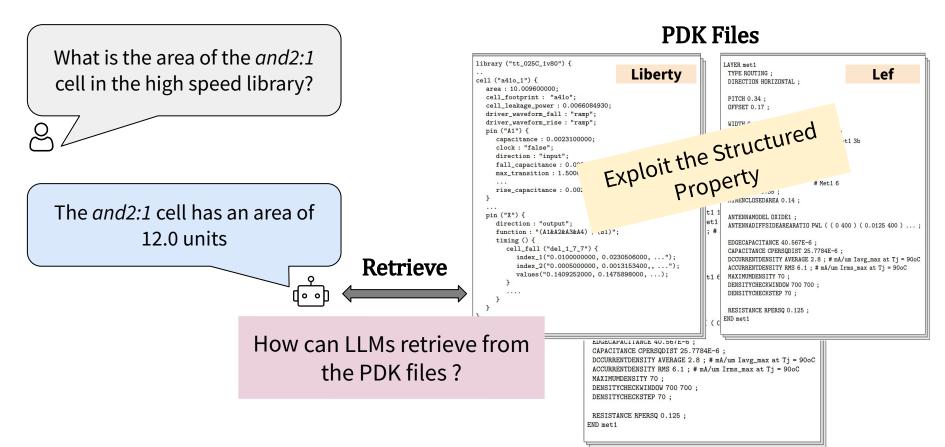
Brown University, Providence, RI



Manual Navigation of PDK and Design Files

 Engineers typically navigate PDK files during various stages of hardware design.


Navigating PDKs is Time Consuming and Error Prone


At Di

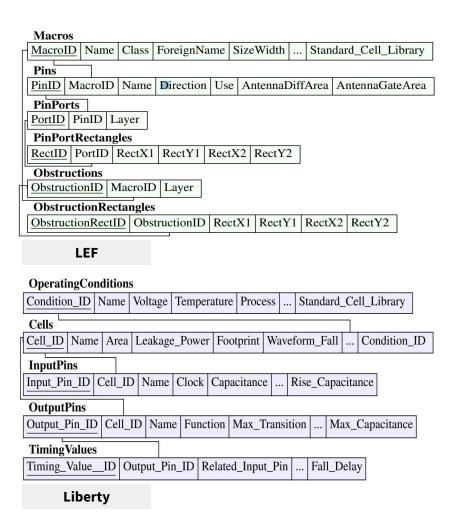
t_026C_1v80*) {
 Liberty

 (000000000);
 tprint: "s440*;
 tage_power: 0.0066008430;
 twform_fall: "ramp";
 thance: 0.0023000000;
 :"false";
 iton: "iongation."
 capacitance: 0.0022460000;
 capacitance: 0.00237400000;
 capacitance: 0.00237400000;

Navigate PDKs with Natural Language

PDK: Relational Database

PDK

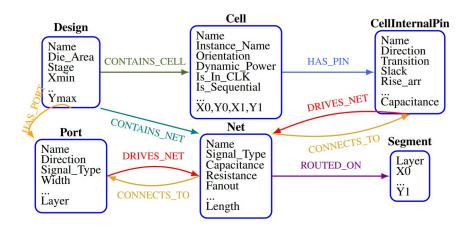


Relational Database

RoutingLayers

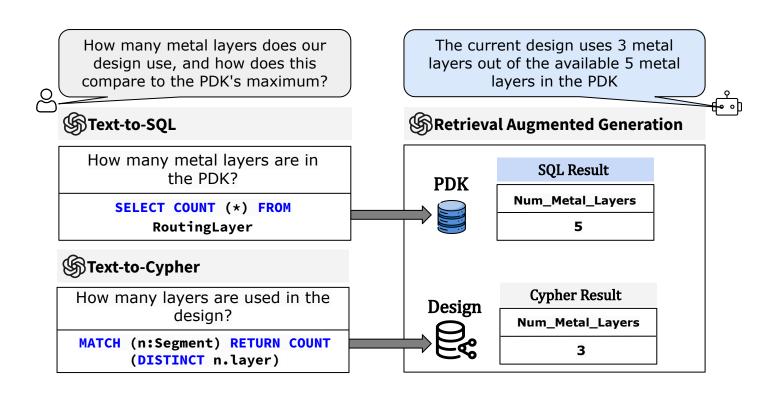
	LayerID	Name	Type	Directio	n Resis	ResistancePerSQ		Corner	Standard	l_Cell_L	ibrary
	AntennaDiffSideAreaRatios										
	RatioID LayerID Type X1 Y1 X2 Y2										
CutLayers											
	LayerID	Name	Type	Width S	Spacing	Resistance		Corner	Standard	_Cell_Li	brary
	AntennaDiffAreaRatios										
	RatioID LayerID Type X1 Y1 X2 Y2										
	Vias										
Γ	ViaID Name Lower_Layer Upper_Layer Corner Standard_Cell_Library										
	ViaLayers										
l	ViaLayerID ViaID LayerName RectX1 RectY1 RectX2 RectY2										

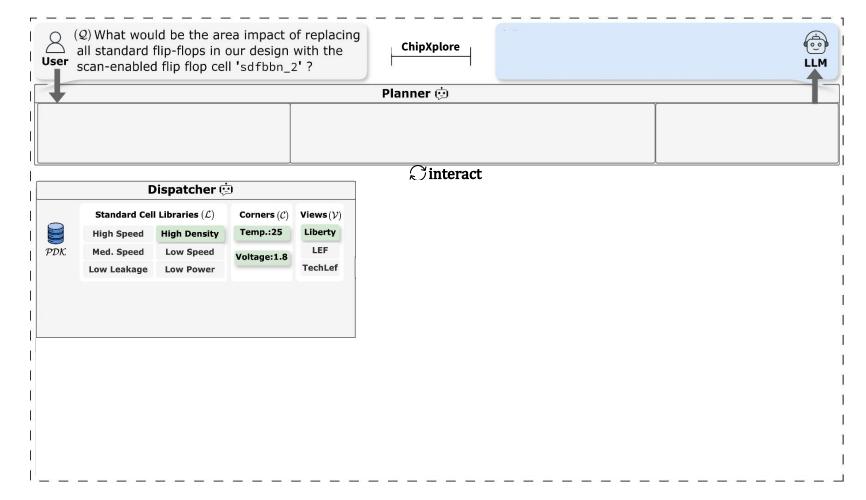
Technology Lef



Hardware Design (DEF): Graph Database

```
DESIGN mydesign;
                                            DEF
UNITS DISTANCE MICRONS 1000:
DIEAREA ( 0 0 ) ( 96990 107710 ) :
COMPONENTS 391:
  - 102 clkbuf 4 + PLACED (31740 51680) FS:
  - _103_ a21o_1 + PLACED (63940 73440) S;
END COMPONENTS
PINS 38 :
  - a[0] + NET a[0] + DIRECTION INPUT + USE SIGNAL
    + PORT
     + LAYER met2 ( -140 -2000 ) ( 140 2000 )
     + PLACED (5750 105710 ) N :
  - a[10] + NET a[10] + DIRECTION INPUT + USE SIGNAL
    + PORT
     + LAYER met2 (-140 -2000) (140 2000)
     + PLACED ( 33350 105710 ) N;
END PINS
NETS 265 :
  - _000_ ( _240_ A ) ( _235_ A2 ) .. + USE SIGNAL ;
  - 016 ( 250 B ) ( 249 Y ) .. + USE SIGNAL :
END NETS
END DESIGN
```




Graph Database

LLM-based Retrieval with Database Queries

Dynamically generate database queries based on user question.

ChipXplore Framework

Experimental Results: Setup

- → **LLMs** gpt-4-turbo
 - o Llama 3.3:70b
 - DeepSeek-V3
- → **PDK**: Skywater 130nm PDK

PDK Database			
Standard Cell Libraries (SCLs)	6		
Tables	19		
Cell Entries	39,576		
Timing Entries	13,874,290		
Size	1.1GB		

→ **Design**: Picorv CPU design.

Tableson Character Tableson and	EF Design
Picorv CPU Design - Cells	50,637
Picorv CPU Design - Nets	11,070

Neo4j Database						
Picorv CPU Neo4j DB- Nodes	605,563					
Picorv CPU Neo4j DB- Edges	2,582,105					

Use Cases: Cross Library Comparison

(a) User Question

Compare the leakage power, clock pin capacitance, area, and average propagation delay of the flip-flop cells with drive strength 4 across the different libraries in the PDK

Generated SQL

```
SELECT OC.Cell_Library, C.Name, C.Cell_Leakage_Power, C.Area, IP.Clock_Pin_Capacitance, TV.Avg_Propagation_Delay FROM
Operating_Conditions OC JOIN Cells C ON OC.Condition_ID =
C.Condition_ID LEFT JOIN Input_Pins IP ON C.Cell_ID = IP.Cell_ID AND
IP.Clock = True LEFT JOIN (SELECT Cell_ID, AVG (Average_Delay) AS
Avg_Propagation_Delay FROM Timing_Values GROUP BY Cell_ID) TV ON
C.Cell_ID = TV.Cell_ID WHERE OC.Temperature = 25.0 AND
OC.Voltage = 1.8 AND C.Is_Flip_Flop = True AND C.Drive_Strength = 4
```

ChipXplore Answer (49 Seconds)

Here's a breakdown for each parameter across libraries:

- 1. Leakage Power (in nW)
- sky130_fd_sc_hd: Ranges from 0.008783073 to 0.01396726.
- 2. Clock Pin Capacitance (in pF)
- sky130_fd_sc_hd: Ranges from 0.001774 to 0.002439.
- 4. Average Propagation Delay (in ns)
- sky130_fd_sc_hd: Ranges from 0.552643 to 0.754195.
- sky130_fd_sc_hs: Ranges from 0.273567 to 0.303940 ...

Summary

-Average Propagation Delay: The 'sky130_fd_sc_hs' shows the lowest delays, indicating potentially faster performance, whereas 'sky130_fd_sc_hd' shows higher delays, which might be a trade-off for lower power consumption or smaller area.

Use Cases: Analyzing Nets

(b) User Question

List nets exceeding thresholds: routed length > 190 microns or fanout > 20, excluding power and ground nets. Analyze the nets' name, fanout, routed length, and metal layers.

Generated Cypher

```
MATCH (d:Design {stage: 'routing'})-[:CONTAINS_NET]->(n:Net) WHERE n.signal_type <> 'POWER' AND n.signal_type <> 'GROUND' AND (n.routed_length > 190 OR n.fanout > 20) RETURN n.net_name, n.fanout, n.routed_length, [s IN [(n)-[:ROUTED_ON]->(seg:Segment) | seg.layer] | s]
```

ChipXplore Answer (24 Seconds)

Here is a breakdown of the analyzed data for each net:

- 1. Net Name: clknet 2 3 leaf clk i
- Fanout: 8.0
- Routed Length: 246.54 microns
- Metal Layers: ['met3', 'met1', 'met2']
- 4. Net Name: _1029_
- Fanout: 6.0
- Routed Length: 192.75 microns
- Metal Layers: ['met3', 'met2', 'met1']

Use Cases: Area and Power Tradeoffs

(c) User Question

What would be the total increase in area and static power if we replaced buffer cells connected to the 'rst_i' net in the current design with the buf_2 cell from the high speed library in the PDK?

Generated SQL

```
SELECT Area, Cell_Leakage_Power AS Static_Power FROM Cells WHERE Name
= 'sky130_fd_sc_hs__buf_2' AND Condition_ID = ( SELECT Condition_ID
FROM Operating_Conditions WHERE Temperature = 25.0 AND Voltage = 1.8
AND Cell_Library = 'sky130_fd_sc_hs' );
```

Generated Cypher

```
MATCH (d:Design {stage: 'routing'})-[:CONTAINS_NET]->(n:Net {net_name
:'rst_i'})-[:CONNECTED_TO]->(c:Cell) WHERE c.is_buf = true RETURN c
```

ChipXplore Answer (52 Seconds)

The existing buffer cell has an area of 3.7536 and a static power of 7.016e-5. The 'sky130_fd_sc_hs__buf_2' cell has an area of 7.992 and a static power of 0.07495. The increase in area per cell is 7.992 - 3.7536 = 4.2384, and the increase in static power per cell is 0.07495 - 7.016e-5. The total increase in area would be 4.2384 and the total increase in static power would be approximately 0.07495.

Experimental Results: Evaluation Set

→ Evaluation Set:

117 questions and their corresponding ground truth query.

→ Accuracy Metrics:

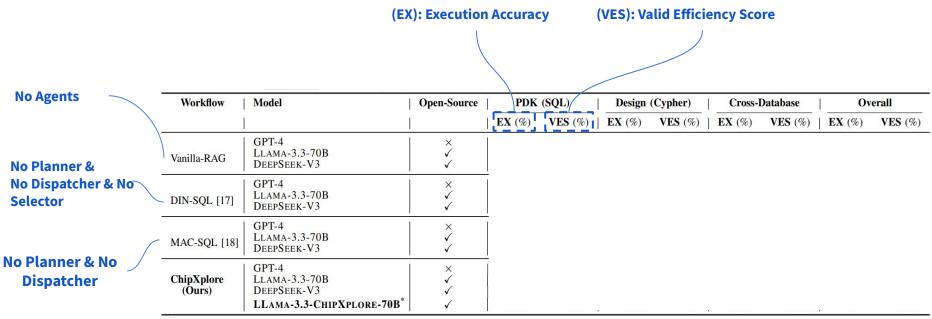
1) Execution Accuracy (EX):

LLM Generated Query returns same result as the ground truth query .

$$EX = \frac{\sum_{i=1}^{N} \mathbb{1}(V_i, \hat{V}_i)}{N}, \quad \mathbb{1}(V_i, \hat{V}_i) = \begin{cases} 1, & \text{if } V_i = \hat{V}_i \\ 0, & \text{if } V_i \neq \hat{V}_i \end{cases}$$

 \hat{V}_i Result returned from executing LLM generated query.

 V_i Result returned from ground truth query.

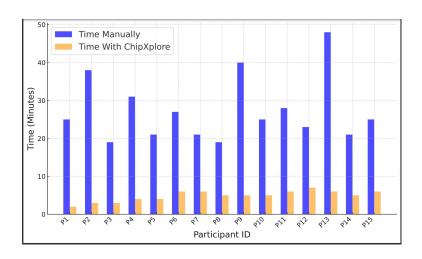

Table I: Evaluation set statistics, showing the number of queries and clause occurrences.

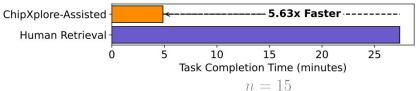
Statistic		PDK		Design ¹	Cross-Database*	Total
	TechLEF	LEF	Liberty	(DEF)		
Total Questions	23	23	28	35	8	117
Clause Occurrences in Gr	ound Truth	Queries	:			
JOIN	3	10	7	-	5	25
ORDER BY	2	7	8	11	6	34
WHERE	26	40	79	11	10	166
GROUP BY	6	5	4	_	4	19
Aggregation Functions	17	14	26	18	8	83
Sub-queries	3	17	41	4	7	72
Avg. Query Length (chars)	161	189	327	129	256	215
Max. Query Length (chars)	452	661	761	258	893	975

¹ Design uses Cypher queries, while PDK uses SQL.

^{*} Cross-Database questions require querying both the PDK and design database.

Main Results




^{*}The LlaMa-3.3-ChipXplore-70b model is finetuned on our SQL schema for PDK queries and generates SQL queries, while LlaMa-3.3-70b handles routing, schema selection, and cypher query generation.

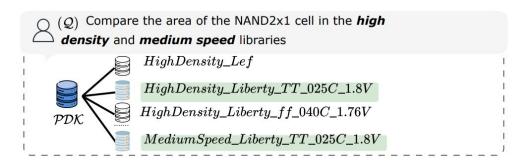
→ ChipXplore + DeepSeek-V3 achieved the highest overall Execution Accuracy 97.39%

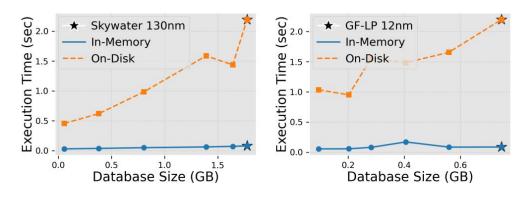
User Study: Productivity Impact

- User study with 15 Electrical and Computer Engineering graduate students.
- Participants completed 4 retrieval tasks; once manually and once using the framework

→ ChipXplore enhanced task completion time by 5.63x, and reduced errors by 5.25x

Thank You!


https://github.com/scale-lab/ChipXplore



Scalability Concerns

• **In-memory** storage scales better than Disk-storage

